On the $k$-ary ‎M‎oment Map

نویسندگان

  • A. Dehghan Nezhad School of Mathematics, Iran University of Science and Technology, Tehran, Iran.
  • M. Dara School of Mathematics, Iran University of Science and Technology, Tehran, Iran.
چکیده مقاله:

The moment map is a mathematical expression of the concept of the conservation associated with the symmetries of a Hamiltonian system. The abstract moment map is defined from G-manifold M to dual Lie algebra of G. We will interested study maps from G-manifold M to spaces that are more general than dual Lie algebra of G. These maps help us to reduce the dimension of a manifold much more.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Moment Map on Symplectic Manifolds

We consider a connected symplectic manifold M acted on by a connected Lie group G in a Hamiltonian fashion. If G is compact, we prove give an Equivalence Theorem for the symplectic manifolds whose squared moment map ‖ μ ‖ is constant. This result works also in the almost-Kähler setting. Then we study the case when G is a non compact Lie group acting properly on M and we prove a splitting result...

متن کامل

The Moment Map Revisited

In this paper, we show that the notion of moment map for the Hamiltonian action of a Lie group on a symplectic manifold is a special case of a much more general notion. In particular, we show that one can associate a moment map to a family of Hamiltonian symplectomorphisms, and we prove that its image is characterized, as in the classical case, by a generalized “energy-period” relation.

متن کامل

Branches in random recursive k-ary trees

In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.

متن کامل

On k-ary spanning trees of tournaments

It is well known that every tournament contains a Hamiltonian path, which can be restated as that every tournament contains a unary spanning tree. The purpose of this article is to study the general problem of whether a tournament contains a k-ary spanning tree. In particular, we prove that, for any fixed positive integer k, there exists a minimum number h(k) such that every tournament of order...

متن کامل

Percolation on a k-Ary Tree

Starting from the root, extend k branches and append k children with probability p, or terminate with probability q = 1− p. Then, we have a finite k-ary tree with probability one if 0 ≤ p ≤ 1/k. Moreover, we give the expectation and variance of the length of ideal codewords for representing the finite trees. Furthermore, we establish the probability of obtaining infinite tree, that is, of penet...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 13  شماره 1

صفحات  53- 61

تاریخ انتشار 2021-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023